3.30 \(\int \frac {\cot (d+e x)}{(a+b \cot ^2(d+e x)+c \cot ^4(d+e x))^{3/2}} \, dx\)

Optimal. Leaf size=156 \[ \frac {\tanh ^{-1}\left (\frac {2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e (a-b+c)^{3/2}}-\frac {-2 a c+b^2+c (b-2 c) \cot ^2(d+e x)-b c}{e (a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \]

[Out]

1/2*arctanh(1/2*(2*a-b+(b-2*c)*cot(e*x+d)^2)/(a-b+c)^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))/(a-b+c)^(3
/2)/e+(-b^2+2*a*c+b*c-(b-2*c)*c*cot(e*x+d)^2)/(a-b+c)/(-4*a*c+b^2)/e/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3701, 1247, 740, 12, 724, 206} \[ \frac {\tanh ^{-1}\left (\frac {2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e (a-b+c)^{3/2}}-\frac {-2 a c+b^2+c (b-2 c) \cot ^2(d+e x)-b c}{e (a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[d + e*x]/(a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4)^(3/2),x]

[Out]

ArcTanh[(2*a - b + (b - 2*c)*Cot[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])
]/(2*(a - b + c)^(3/2)*e) - (b^2 - 2*a*c - b*c + (b - 2*c)*c*Cot[d + e*x]^2)/((a - b + c)*(b^2 - 4*a*c)*e*Sqrt
[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 3701

Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> -Dist[f/e, Subst[Int[((x/f)^m*(a + b*x^n + c*x^(2*n))^p)/(f^2 + x^
2), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {\cot (d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {x}{\left (1+x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{(1+x) \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot ^2(d+e x)\right )}{2 e}\\ &=-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac {\operatorname {Subst}\left (\int \frac {-\frac {b^2}{2}+2 a c}{(1+x) \sqrt {a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{(a-b+c) \left (b^2-4 a c\right ) e}\\ &=-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {\operatorname {Subst}\left (\int \frac {1}{(1+x) \sqrt {a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{2 (a-b+c) e}\\ &=-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac {\operatorname {Subst}\left (\int \frac {1}{4 a-4 b+4 c-x^2} \, dx,x,\frac {2 a-b-(-b+2 c) \cot ^2(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{(a-b+c) e}\\ &=\frac {\tanh ^{-1}\left (\frac {2 a-b+(b-2 c) \cot ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 (a-b+c)^{3/2} e}-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 7.63, size = 25149, normalized size = 161.21 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[d + e*x]/(a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4)^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

fricas [B]  time = 1.80, size = 1771, normalized size = 11.35 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="fricas")

[Out]

[1/4*((a*b^2 + b^3 - 4*a*c^2 + (a*b^2 - b^3 - 4*a*c^2 - (4*a^2 - 4*a*b - b^2)*c)*cos(2*e*x + 2*d)^2 - (4*a^2 +
 4*a*b - b^2)*c - 2*(a*b^2 + 4*a*c^2 - (4*a^2 + b^2)*c)*cos(2*e*x + 2*d))*sqrt(a - b + c)*log(2*(a^2 - 2*a*b +
 b^2 + 2*(a - b)*c + c^2)*cos(2*e*x + 2*d)^2 + 2*a^2 - b^2 + 2*c^2 + 2*((a - b + c)*cos(2*e*x + 2*d)^2 - (2*a
- b)*cos(2*e*x + 2*d) + a - c)*sqrt(a - b + c)*sqrt(((a - b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*
d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1)) - 4*(a^2 - a*b + b*c - c^2)*cos(2*e*x + 2*d)) -
 4*(a*b^2 - b^3 - 2*(2*a - b)*c^2 - 2*c^3 + (a*b^2 - b^3 - 4*b*c^2 + 2*c^3 - (2*a^2 - 3*b^2)*c)*cos(2*e*x + 2*
d)^2 - (2*a^2 - 2*a*b - b^2)*c - 2*(a*b^2 - b^3 - (2*a + b)*c^2 - (2*a^2 - a*b - 2*b^2)*c)*cos(2*e*x + 2*d))*s
qrt(((a - b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*
x + 2*d) + 1)))/((a^3*b^2 - 3*a^2*b^3 + 3*a*b^4 - b^5 - 4*a*c^4 - (12*a^2 - 12*a*b - b^2)*c^3 - 3*(4*a^3 - 8*a
^2*b + 3*a*b^2 + b^3)*c^2 - (4*a^4 - 12*a^3*b + 9*a^2*b^2 + 2*a*b^3 - 3*b^4)*c)*e*cos(2*e*x + 2*d)^2 - 2*(a^3*
b^2 - 2*a^2*b^3 + a*b^4 + 4*a*c^4 + (4*a^2 - 8*a*b - b^2)*c^3 - (4*a^3 - 3*a*b^2 - 2*b^3)*c^2 - (4*a^4 - 8*a^3
*b + 3*a^2*b^2 + b^4)*c)*e*cos(2*e*x + 2*d) + (a^3*b^2 - a^2*b^3 - a*b^4 + b^5 - 4*a*c^4 - (12*a^2 - 4*a*b - b
^2)*c^3 - (12*a^3 - 8*a^2*b - 7*a*b^2 + b^3)*c^2 - (4*a^4 - 4*a^3*b - 7*a^2*b^2 + 6*a*b^3 + b^4)*c)*e), -1/2*(
(a*b^2 + b^3 - 4*a*c^2 + (a*b^2 - b^3 - 4*a*c^2 - (4*a^2 - 4*a*b - b^2)*c)*cos(2*e*x + 2*d)^2 - (4*a^2 + 4*a*b
 - b^2)*c - 2*(a*b^2 + 4*a*c^2 - (4*a^2 + b^2)*c)*cos(2*e*x + 2*d))*sqrt(-a + b - c)*arctan(((a - b + c)*cos(2
*e*x + 2*d)^2 - (2*a - b)*cos(2*e*x + 2*d) + a - c)*sqrt(-a + b - c)*sqrt(((a - b + c)*cos(2*e*x + 2*d)^2 - 2*
(a - c)*cos(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1))/((a^2 - 2*a*b + b^2 + 2*(
a - b)*c + c^2)*cos(2*e*x + 2*d)^2 + a^2 - b^2 + 2*a*c + c^2 - 2*(a^2 - a*b + b*c - c^2)*cos(2*e*x + 2*d))) +
2*(a*b^2 - b^3 - 2*(2*a - b)*c^2 - 2*c^3 + (a*b^2 - b^3 - 4*b*c^2 + 2*c^3 - (2*a^2 - 3*b^2)*c)*cos(2*e*x + 2*d
)^2 - (2*a^2 - 2*a*b - b^2)*c - 2*(a*b^2 - b^3 - (2*a + b)*c^2 - (2*a^2 - a*b - 2*b^2)*c)*cos(2*e*x + 2*d))*sq
rt(((a - b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x
 + 2*d) + 1)))/((a^3*b^2 - 3*a^2*b^3 + 3*a*b^4 - b^5 - 4*a*c^4 - (12*a^2 - 12*a*b - b^2)*c^3 - 3*(4*a^3 - 8*a^
2*b + 3*a*b^2 + b^3)*c^2 - (4*a^4 - 12*a^3*b + 9*a^2*b^2 + 2*a*b^3 - 3*b^4)*c)*e*cos(2*e*x + 2*d)^2 - 2*(a^3*b
^2 - 2*a^2*b^3 + a*b^4 + 4*a*c^4 + (4*a^2 - 8*a*b - b^2)*c^3 - (4*a^3 - 3*a*b^2 - 2*b^3)*c^2 - (4*a^4 - 8*a^3*
b + 3*a^2*b^2 + b^4)*c)*e*cos(2*e*x + 2*d) + (a^3*b^2 - a^2*b^3 - a*b^4 + b^5 - 4*a*c^4 - (12*a^2 - 4*a*b - b^
2)*c^3 - (12*a^3 - 8*a^2*b - 7*a*b^2 + b^3)*c^2 - (4*a^4 - 4*a^3*b - 7*a^2*b^2 + 6*a*b^3 + b^4)*c)*e)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.64, size = 417, normalized size = 2.67 \[ -\frac {2 c \sqrt {\left (\cot ^{2}\left (e x +d \right )+\frac {b +\sqrt {-4 c a +b^{2}}}{2 c}\right )^{2} c -\sqrt {-4 c a +b^{2}}\, \left (\cot ^{2}\left (e x +d \right )+\frac {b +\sqrt {-4 c a +b^{2}}}{2 c}\right )}}{e \left (b -2 c +\sqrt {-4 c a +b^{2}}\right ) \left (-4 c a +b^{2}\right ) \left (\cot ^{2}\left (e x +d \right )+\frac {\sqrt {-4 c a +b^{2}}}{2 c}+\frac {b}{2 c}\right )}+\frac {2 c \sqrt {\left (\cot ^{2}\left (e x +d \right )-\frac {-b +\sqrt {-4 c a +b^{2}}}{2 c}\right )^{2} c +\sqrt {-4 c a +b^{2}}\, \left (\cot ^{2}\left (e x +d \right )-\frac {-b +\sqrt {-4 c a +b^{2}}}{2 c}\right )}}{e \left (\sqrt {-4 c a +b^{2}}-b +2 c \right ) \left (-4 c a +b^{2}\right ) \left (\cot ^{2}\left (e x +d \right )-\frac {\sqrt {-4 c a +b^{2}}}{2 c}+\frac {b}{2 c}\right )}-\frac {2 c \ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (\cot ^{2}\left (e x +d \right )+1\right )+2 \sqrt {a -b +c}\, \sqrt {\left (\cot ^{2}\left (e x +d \right )+1\right )^{2} c +\left (b -2 c \right ) \left (\cot ^{2}\left (e x +d \right )+1\right )+a -b +c}}{\cot ^{2}\left (e x +d \right )+1}\right )}{e \left (\sqrt {-4 c a +b^{2}}-b +2 c \right ) \left (b -2 c +\sqrt {-4 c a +b^{2}}\right ) \sqrt {a -b +c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e*x+d)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x)

[Out]

-2/e*c/(b-2*c+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)/(cot(e*x+d)^2+1/2/c*(-4*a*c+b^2)^(1/2)+1/2*b/c)*((cot(e*x+d)^2+
1/2*(b+(-4*a*c+b^2)^(1/2))/c)^2*c-(-4*a*c+b^2)^(1/2)*(cot(e*x+d)^2+1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2)+2/e*c/
((-4*a*c+b^2)^(1/2)-b+2*c)/(-4*a*c+b^2)/(cot(e*x+d)^2-1/2/c*(-4*a*c+b^2)^(1/2)+1/2*b/c)*((cot(e*x+d)^2-1/2*(-b
+(-4*a*c+b^2)^(1/2))/c)^2*c+(-4*a*c+b^2)^(1/2)*(cot(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(1/2))/c))^(1/2)-2/e*c/((-4*
a*c+b^2)^(1/2)-b+2*c)/(b-2*c+(-4*a*c+b^2)^(1/2))/(a-b+c)^(1/2)*ln((2*a-2*b+2*c+(b-2*c)*(cot(e*x+d)^2+1)+2*(a-b
+c)^(1/2)*((cot(e*x+d)^2+1)^2*c+(b-2*c)*(cot(e*x+d)^2+1)+a-b+c)^(1/2))/(cot(e*x+d)^2+1))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot \left (e x + d\right )}{{\left (c \cot \left (e x + d\right )^{4} + b \cot \left (e x + d\right )^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(e*x + d)/(c*cot(e*x + d)^4 + b*cot(e*x + d)^2 + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\mathrm {cot}\left (d+e\,x\right )}{{\left (c\,{\mathrm {cot}\left (d+e\,x\right )}^4+b\,{\mathrm {cot}\left (d+e\,x\right )}^2+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d + e*x)/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(3/2),x)

[Out]

int(cot(d + e*x)/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot {\left (d + e x \right )}}{\left (a + b \cot ^{2}{\left (d + e x \right )} + c \cot ^{4}{\left (d + e x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)/(a+b*cot(e*x+d)**2+c*cot(e*x+d)**4)**(3/2),x)

[Out]

Integral(cot(d + e*x)/(a + b*cot(d + e*x)**2 + c*cot(d + e*x)**4)**(3/2), x)

________________________________________________________________________________________